

High Resolution Electronic Measurements in Nano-Bio Science

Electrical measurements in liquids *Basic considerations*

Giorgio Ferrari

Milano, June 2025

Outline

- Example of electrical measurements in liquid
- The electrical behavior of the (bulk) liquid
- Metal liquid interface: charge redistribution
 - Double-layer capacitance

Next lessons:

- Charge transfer at the metal-liquid interface
- The importance of mass transport

Example 1

<u>Oil</u>

Example 2

Distilled water

- Parallel plate electro A_{el} = 1cm x 1cm L= 1mm
- Low frequency: resistive behavior
- High frequency: capacitive behavior

Example 3

Tap water

 A_{el} = 1cm x 1cm L= 1mm

- Low frequency: ≈capacitive behavior
- Medium frequency: resistive behavior
- High frequency: capacitive behavior

The role of the ions

Oil

The difference is given by the concentration of charge carriers

lons

Charged particles

Example of electrical meas. of nonionic liquids Analysis of suspended particles

For small particles (<10 μ m, effective medium theory):

$$f\frac{\epsilon_p - \epsilon_e}{\epsilon_p + 2\epsilon_e} = (1 - f)\frac{\epsilon_l - \epsilon_e}{\epsilon_l + 2\epsilon_e}$$

f= volume fraction

- $\epsilon_{\rm p}$ dielectric const. of particles
- 1925 (Fricke, Morse): cell membrane thickness (4nm!)
- dipole moment of molecules [Thompson, J. Chem. Educ., 1966]

Electrical meas. of biological samples

- ~65% of body mass is water
- Cells, enzymes, proteins,...
 ... "survive" only in water
 + a lot of ions

Electrolytes

Polar molecule (water)

Electrolytes

Electrolytes

Charge Transport

Diffusion

 $\propto \frac{\partial C_i(x)}{\partial x}$ (*C_i* concentration)

Drift (migration)

 $\propto C_i E(x)$ (*E* electric field)

- Convection (fluid motion)
 - Natural (density gradient)
 - Mechanical (stirring, flow in microfluidic channel...)
 - $\propto C_i v(x)$ (v velocity of sol.)

Wang, Analytical Electrochemistry

Drift current Current density due to the charged species i:

 $J_i = z_i q p_i \mu_i E(x)$

 z_i = number of charge (dimensionless) of species i $q = elementary charge (1.6 \ 10^{-19} C)$ $\mu_i = \text{mobility} [\text{cm}^2/\text{Vs}]$ E(x) = electric field [V/cm] $p_i = \text{concentration in } \# \text{ions/cm}^3 = C_i \cdot N_{Av} / 1000$

C_i= *molar concentration* = mol / liter

 N_{Av} =Avogadro const. $1 \text{ M} \rightarrow 6.10^{23} \text{ ions/cm}^3$

 $J_i = z_i q \mu_i \frac{C_i N_{Av}}{1000} E(x)$ $I_{TOT} = \sum_{i} A J_i$

A= surface

all charged

species

F= Faraday constant = $q N_{\Delta v}$ $\sigma_i = z_i q p_i \mu_i = \frac{z_i F \mu_i C_i}{1000}$

conductivity (1/resistivity)

Mobilities and diffusion coefficients

(low concentration, no interionic interactions)

Cation	Mobility (10 ⁻⁴ cm ² /Vs)	Anion	Mobility (10 ⁻⁴ cm ² /Vs)
\mathbf{H}^+	36.3	OH-	20.5
Li ⁺	4	\mathbf{F}^{-}	5.7
Na ⁺	5.2	CI	7.9
Li ⁺ Na ⁺ K ⁺	7.6	Br ⁻	8.1
NH ⁺	7.6	I-	8.0
Ca2+Mg2+La3+Ag4	6.2	NO ₃	7.4
Mg^{2+}	5.5	HCO ₁	4.6
La ³⁺	7.2	SO_4^{2-2}	8.3
Ag	6.4	$Fe(CN)_6^{3-}$	10.5
$(CH_3)_4N^+$	4.7	S. 21 21 390	3.9.42
$\mu \approx 5 \cdot 1$	$0^{-4} \frac{cm^2}{Vs} \qquad D =$	$\approx 10^{-5} \frac{cm^2}{s}$	Silicon: μ ≈ 1000 cm²/Vs D ≈ 20 cm²/s

POLITECNICO MILANO 1863

14

Equivalent circuit of bulk solution

Parallel plate electrodes, area A

Small disk: diameter d \ll L

Dielectric relaxation time

Examples of solution

- pure water: $pH = 7 \rightarrow C_{H^+} = 10^{-7} \text{ M} \rightarrow \rho \approx 20 \text{ M}\Omega \cdot \text{cm}, \epsilon_r \approx 78$ $\downarrow \tau_d \approx 140 \mu \text{s}, f_d \approx 1 \text{ kHz}$
- tap water:

 Phosphate Buffered Saline (PBS) commonly used for *in-vitro biological research*

Dulbecco's formula: 137mM NaCl; 8.10mM Na₂HPO₄; 2.68mM KCl;...

1M means N_A= $6 \cdot 10^{23}$ molecules per liter $\rightarrow \approx 10^{20}$ ions/cm³ !

τ_d ≈ 0.5ns , f_d ≈ 350 MHz

same ρ of silicon doped with $\approx 10^{14}$ cm⁻³ moderate conductor for electronics

Electrical current in electrolytes

lons shield the electrodes \rightarrow no further charge transport

Metal-liquid interface

POLITECNICO MILANO 1863

G. Ferrari - Electrical measurements in liquids

Charge redistribution at the interface metal solution

The interface electric field can reach 10-100MV/cm!!!

Potential of zero charge

metal solution

23

Electrical Model (Stern model)

Restriction to the closest approach of ions

IHP (≈0.2nm): inner Helmholtz plane: specifically adsorbed ions (bond formation / desolvated)

OHP (≈0.4nm) outer Helmholtz plane: minimum distance of solvated ions (nonspecifically adsorbed, only electrostatic force)

Diffuse layer (≈1-10nm): distribution of ions from OHP to bulk due to thermal motion

Compact layer capacitance

Restriction to the closest approach of ions

Diffuse layer capacitance

Ion concentration determined by Boltzman statistics + Poisson eq.

$$\frac{\tanh(zq\phi/4kT)}{\tanh(zq\phi_0/4kT)} = \exp\left(-\frac{x}{L_D}\right)$$

zq= charge of the single ion ϕ_0 = potential drop across the diffuse layer (V-V_{zero charge})

> for $\phi_0 < 50mV$: $\phi(x) \cong \phi_0 \exp(-x/L_D)$

 $L_D = \sqrt{\frac{\epsilon kT}{2z^2 q^2 C_0}}$

Debye length diffuse layer "thickness"

 C_0 = ion concentration in the bulk

Diffuse layer capacitance

Ion concentration determined by Boltzman statistics + Poisson eq.

pure water, pH=7 (100nM): $L_D \approx 1 \mu m$

 C_0 = ion concentration in the bulk

<u>Note</u>: any charge is screened by ions at a distance greater than $\approx L_D$, keep this in mind when designing charge-based biosensors!

Diffuse layer capacitance

Ion concentration determined b

depends on the potential (Φ_0) and concentration (L_D)

POLITECNICO MILANO 1863

19

Electrical Model (Stern model)

Double layer capacitance

of zero charge (PZC)

FIGURE 1-13 Double-layer capacitance of a mercury drop electrode in NaF solutions of different concentrations. (Reproduced with permission from reference 5.)

Wang, Analytical Electrochemistry

PBS:

POLITECNICO MILANO 1863

C_H depends on potential, saturated dielectric, ion-ion interaction, adsorption,... Strong sensitivity to the atomic structure of the surface ! 30

Well-defined electrode surface

Strong sensitivity to the atomic structure of the surface!

«Real area» of an electrode C_{dl} depends on the interfacial geometry on the L_D scale (~ 1nm in PBS!)

Double layer follows hills and valleys having size \gg Debye length

The "microscopic area" of C_{dl} could be 2-3 times the macroscopic "geometrical area"

...and C_{dl} is affected by surface cleanliness: a 1 nm-thick layer of organic contaminants on the surface can halve the capacitance!

Atomic scale disorder

distribution of time constants

$$\frac{1}{Z} = Y = \sum_{i} \left(R_i + \frac{1}{sC_i} \right)^{-1}$$

Constant Phase Element

"Slope" of C_{dl} impedance is usually less than 1 (n = 0.8-0.9) $Z_{CPE} = \frac{1}{Q(j\omega)^n}$

Excellent for fitting experimental data, but no clear physical insight, research is ongoing! surface disorder, porous

electrodes, adsorption, impurities,...

$$C_{eff} = Q^{1/n} R_{sol}^{(n-1)/n}$$

Lasia, J. Phys. Chem. Lett. 2022

CPE: Look at the Phase

POLITECNICO MILANO 1863

G. Ferrari - Electrical measurements in liquids

Summary

- Ions make the liquid a conductor: very small mobility (≈ 5·10⁻⁴ cm²/Vs), but the ion concentration could be high (PBS: ≈10²⁰ ions/cm³)
- $R_{solution} = \rho \cdot \text{geometrical factor}, C_{solution} = \varepsilon / \text{geom. factor}$ $1/\rho = \sum z_i q p_i \mu_i = \sum z_i q \frac{N_{av}C_i}{1000} \mu_i, \quad \varepsilon = 78 \text{ (water)}$
- Resistive behavior up to frequency ≈ 1/(2πρε) physiological solution (PBS) is a "reasonable" conductor up to ≈350MHz
- Metal-liquid interface: a complex charge redistribution

 \rightarrow double-layer capacitance

- C_{dl} has an enormous value (PBS: $10\text{-}40\mu\text{F/cm}^2$) since the Debye length is usually in the nm scale
- Double layer is sensitive to the roughness and atomic structure of the surface $\rightarrow C_{dl}$ is not a very well-controlled value
- In many practical cases, C_{dl} is an imperfect capacitor \rightarrow constant phase element: $Z_{CPE} = \frac{1}{O(i\omega)^n}$

Small signal equivalent model

